[E elucian

GLick

Issue 1

Consunner Unift
Product Catalogue

Keeping Up wiith

Regulations...

The Elucian consumer units range has been designed to ensure compliance with BS 7671 ur engineers have considered how installers need to comply with the UK wiring regulation when installing consumer units in properties across the UK. The Elucian range has comprehensive options for every installation. These consist of Main Switch units, RCBO units, Split Load units and our Combination units.

Overload Protection

 (536.4.3.2) \& (536.4.202)Overload protection must be considered when RCCBs have the ability to become overloaded due to the total amount of current being taken by the final circuits being offered protection.

The designer and installer must therefore select the correct ated device from the options we have made available; 63Amp. B0Amp or 100Amp. To make this process easer we have nstalled 80Amp devices as standard.

Overcurrent Protection
(Section 443) \& (Section 553)
SPDs offer very effective protection against overvoltage Section 443 covers the requirements for consideration when selecting SPDs in the electrical system. Section 533 confirms what types are required and where they must be installed
within the electrical system.
We have designed our SPD consumer unit to incorporate a type 2 device. These devices offer protection from man-made overvoltages or lightning strikes within the vicinity of the installation.

Having SPDs installed adjacent to the main switch allows or compliance with the maximum cable length from the SPD to Earth.

Types of RCD
(531.3.3)

Many different types of RCD exist. BS 7671 recognises ypes $A C, A, F$ and B. Currently $A C$ RCDs are recognised as acceptable for general purpose. However, if the installation has any DC components or frequency alterations due to connected loads one of the other types must be selected.

As most installations in the UK now have some DC components, it would be prudent to select a type A RCD that has the ability to work with DC fault current. We have produced type A RCDs only as they comply with the requirements of the AC type, and include added benefits of the DC threshold.

Division of Installation

 (Section 314)This regulation set requires the designer and installer to ensure the installation is divided up as necessary to
(i) Avoid danger and minimise inconvenience in the event of a fault.
(ii) Facilitate safe inspection, testing and maintenance.
(iii) Take account of hazards that may arise from the failure of a single circuit such as a lighting circuit.
(iv) Reduce the possibility of unwanted tripping of RCDs due to excessive protective conductor current or due to fault.
v) Mitigate the effects of electromagnetic disturbances.
(vi) Prevent the indirect energization of a circuit intended to be isolated

（overload

Protection of RCDs．．．

These devices have the ability to be overloaded if the combined
outgoing current from the final circuits is greater than the rating of the
RCCB．Therefore，we provide an 80Amp device as standard with the
ability to change this to a 100 Amp ，or reduce to a 63 Amp if required．

＂RCCBs \＆switches do not provide protection against overload，therefore they shall be protected

（536．4．202）

．．．overload protection shall not solely be based on the use of diversity factors of the downstream Circuits．To achieve overload protection of RCCBS or switches，the rated current of the over－current according to the manufacturers instructions

Connply vaith

the regs．．．

Regulations 536．4．3．2 and 536．4．202 require the designer to understand the loading profile of the RCCBs within the consumer unit．RCCBs will protect a number of outgoing circuits at the same time．

Method 1

Ensure the full load of all final circuits eing protected are less than the rating of the RCCB．The installer will need to consider diversity for the final circuits， but not use diversity as the sole factor fo of the device．

Method 2

Ensure the main protective device is of a size to limit the total amount of amps

Example 1：
This install would not comply
RCCB1 could be subject to
overload

Example 2：
This installation would comply． Although RCCB1 could potentially become overloaded，the protective device at the origin would offer overload protection．

Example 3：
RCBOs offer comprehensive protection as each device is rated
to the circuit．

RCD \& RCBO

Protective Devices...

RCDs are available in a number of common types; AC, A, or B. Dependant on the characteristics of the final circuit/s being controlled, the type of RCD selected is very important. fit is believed DC current could be present in the protected circuit/s due to the equipment connected, the designer hould select a device capable of working with that current present.

General RCDs are designed to operate instantaneously without intentional delay; because of this they are not designed to discriminate in the event of a fault. Therefore, t two general RCDs were to be installed in series, both m,
 , mid seld intentional operation of a device upstream from the eakage to Earth

nstaling the correct type of device is essential if it is believed DC fault current could be present within the installation. It is important not to install an RCD type that is capable of handling DC fault current ahead of a device that isn't able to operate with these currents.

Such as:

Type A RCD
In today's instalations the majority of equipment does have some residual DC current due to the internal electronics. The magnitude of this current can have a detrimental effect on the effectiveness of the protective device. Therefore, we have taken the decision to manufacture Type A devices only.
Type A devices have the ability to continue to work with up to 6 mA of DC fault current present. This amount of fault current has been shown to stop AC Type RCDs/RCBOs from working within the maximum time permitted in BS 6761 .

RCCB - Residual Current Operated Circuit Breake
without integrated overcurrent protection.

The Neutral fly lead has been made long enough to ensure safe connection to the dedicated Neutral bars.

RCBO - Residual Current Operated Circuit Breaker with integrated overcurrent protection.

Surge

Protection...

Transient Overvoltages

Many installations across the UK have electronic components within them Surge protection will offer those devices and appliances protection from overvoltage.

Products such as computers, printers, flat screen televisions, alarms, microwaves and washing machines are commonplace. These can all be vulnerable to transient overvoltages, which can significantly reduce the equipment's lifespan through degradation and damage.

A transient overvoltage or surge is a short duration increase in voltage measured between wo or more conductors. In short, this means anything from microseconds (millionths of a second) to a few milliseconds (thousandths of a second) in duration.

Example

A domestic consumer unit with 500 m of LV supply
overhead (Lpal) and 500m of supply underground (Lpcl);
CRL $=f_{\text {env }}\left(L_{\mathrm{p}} \times \mathrm{N}_{\mathrm{g}}\right)$
CRL $=85 /(2 \times 0.5) \times 0.5$
CRL $=170$
Which means that surge protection will be required.

Covers Overvoltage

Control (443.5)
Calculated risk level (CRL) is used to determine if protection against overvoltages of atmospheric origin is required. The CRL is found by the following formula:

CRL $=f_{\text {env }} /\left(L_{\mathrm{p}} \times \mathrm{N}_{\mathrm{g}}\right)$
env- is an environmental factor selected according to Table 443. (Rural/Suburban or Urban)
\mathbf{L}_{p} - is the risk assessment length in km
\mathbf{N}_{g} - is the lightning ground flash density (flashes per km^{2} per year) relevant to the location of the power line and connected structure (see figure 44.2).

If the CRL value is less than 1000 then SPD protection should be installed If the CRL value is 1000 or more then SPD protection is not required.

Covers Overvoltage

Control (443.4)

Protection against overvoltages shall be provided where the consequence caused by overvoliage could:
(i) Result in serious injury to, or loss of, human life.
(ii) Result in the interruption of public services and/or damage to cultural heritiage.
(iii) Result in interruption of commercial or industrial activity.
(iv) Affect a large number of co-located individuals.
or all oiner cases, a risk assessment according to reguation 443.5 snall be periorned to determine if protection against transient overvoliage is required. If the risk assessment is not performed, the electrical salaion shail be provided with protection against transient overvoliages, except for single dwelling units where the total value of the installation and equipment therein does not justify such protection

Protection against switching overvoltages shall be considered in the case of equipment likely to produce switching overvoliages or disturbances exceeding the values according to the voliage category of the nstallation, e.g. where an LV generator supplies the installation or where inductive or capaciive loads (e.g. motors, transformers, capacitor banks) storage units or high-current loads are installed.

SPD Type 2

SPD which can prevent the spread of over-voliages in the electrical installations and protects equipmen: connected to it It usually employs metal oxide varistor (MOV) technology and is characterised by
an $8 / 20 \mu$ s current wave.

Terminology

mp - Impulse current of $10 / 350$ us waveiorm.
I.- Surce current of $8 / 20$ us waveform associated with Type 2 SPDs.
U_{0} - The residual vollace that is measured across the terminal of the SPD when In is applied
\mathbf{U}_{c} - The maximum volitage which may be continuously applied to the SPD without it conducting.
$I_{\text {max }}$ - Maximum short circuit current of the device.

Consumer Units

Functional, stylish, and innovative, our Elucian range of consumer units provides an exceptional option for any residential or light commercial environment. Packed with features making installation quick and simple for electricians, with a clear labelling kit for easy identification for the customer. A great range of

Supplied with complete complement of earth and neutral terminals
along with marking labels, busbar and instruction leaflet.

Split Load Units
CUEB14MSRCD8
CUEB16MSRCD10 CUEB18MSRCD12 CUEB22MSRCD16

14 Way Unit with 100A Mains Switch $+2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD ($4+4$ Free Ways) 16 Way Unit with 100 A Mains Switch $+2 \times 80$ A 30 mA RCD ($5+5$ Free Ways) 22 Way Unit with 100 A Mains Switch $+2 \times 80$ A 30mA RCD ($8+8$ Free Ways)

Warranty: 10 Years Devices: 3 Years
Standards: BS EN 61439-3 BS EN 60947-3 BS EN $61008-1$
Dimen
Dimensions: 14 Way: 330 mm (M) $\times 260 \mathrm{~mm}$ (H) $\times 115 \mathrm{~mm}$ (D)
18 Way: $402 \mathrm{~mm}(\mathrm{~W}) \times 260 \mathrm{~mm}($ (H) $) \times 115 \mathrm{~mm}(\mathrm{D})$
18 Way: $402 \mathrm{~mm}(\mathbb{W}) \times 260 \mathrm{~mm}(H) \times 115 \mathrm{~mm}$ (D)

SPD Fitted

Supplied with complete complement of earth and neutral terminals
along with marking labels, busbar and instruction leaflet.

Split Load Units Including Surge Protection
CUEB14MSRCDSP6 14 Way Unit with 100A Mains Switch $+2 \times 80$ A 30mA RCD +2 Pole SPD ($3+3$ Free Ways CUEB16MSRCDSP8 16 Way Unit with 100A Mains Switch $+2 \times 80$ A 30mA RCD +2 Pole SPD ($4+4$ Free Ways CUEB18MSRCDSP10 18 Way Unit with 100A Mains Switch $+2 \times 80$ A $30 \mathrm{~mA} \mathrm{RCD}+2$ Pole SPD ($5+5$ Free Ways CUEB22MSRCDSP14 22 Way Unit with 100A Mains Switch $+2 \times 80$ A $30 \mathrm{~mA} \mathrm{RCD}+2$ Pole SPD ($7+7$ Free Ways)

Warranty: 10 Years Devices: 3 Years
Standards: BS EN 61439-3 BS EN 60947-3 BS EN 61008-1 BS EN 61643-1-1
14 Way: $330 \mathrm{~mm}(\mathbb{W}) \times 260 \mathrm{~mm}(H) \times 115 \mathrm{~mm}(\mathrm{D})$
16 Way: $366 \mathrm{~mm}(\mathbb{W}) \times 260 \mathrm{~mm}(H) \times 115 \mathrm{~mm}(\mathrm{D})$
22 Way: $474 \mathrm{~mm}(\mathrm{~W}) \times 260 \mathrm{~mm}(\mathrm{H}) \times 115 \mathrm{~mm}$ (D)

MCB's Single Pole B Curve
CU1MCB6B
CU1MCB10B
CU1MCB16B
Cu1MCB20B CU1MCB20B
CU1MCB25B CU1MCB25B Cu1MCB40B CU1MCB50B CU1MCB63B

6A B Curve True 6kA MCB 10A B Curve True 6 kA MCB 20A B Curve True 6kA MCB 25A B Curve True 6kA MCB 32A B Curve True 6KA MCB 40 A B Curve True 6 kA MCB 50 A B Curve True 6kA MCB 63A B Curve True 6kA MCB

MCB's Single Pole C Curve
CU1MCB6C 6A C Curve True 6kA MCB CU1MCB10C 10A C Curve True 6kA MCB CU1MCB16C 16A C Curve True 6kA MCB CU1MCB20C 20 A C Curve True 6kA MCB CU1MCB25C 25 A C Curve True 6kA MCB CU1MCB32C 32A C Curve True 6kA MCB CU1MCB40C 40 A C Curve True 6kA MCB CU1MCB50C 50 A C Curve True 6kA MCB CU1MCB63C 63A C Curve True 6kA MCB

Warranty: 3 Years
Standards: BS EN 60898-1
rcbo's Type A Single Pole C Curve
CU1RCBO6C 6A 30mA C Curve True 6kA RCBO CU1RCBO10C 10A 30mA C Curve True 6kA RCBO CU1RCBO16C 16 A 30mA C Curve True 6kA RCBO CU1RCBO20C 20 A 30 mA C Curve True 6kA RCBO 32A 30mA C Curve True 6kA RCB

[^0]

Fused Main Switc
DB700
BB701 Fused Main Switch (80A HRC Fuse Fitted)
DB750 80A Fused Main Switch (80A HRC Fuse Fitted) - Lockable
DB751 100A Fused Main Switch (80A HRC Fuse Fitted)
100A Fused Main Switch (80A HRC Fuse Fitted) - Lockable

Standards: BS 60947-03
Cable Size: 700 701: 25 mm^{2} \& 16 mm ${ }^{2} 750$ 751:35mm²
Dimensions:700 701: $127.5 \mathrm{~mm}(\mathrm{~W}) \times 53.5 \mathrm{~mm}$ (D) $\times 80.5 \mathrm{~mm}$ (H) $750751: 133 \mathrm{~mm}(W) \times 60 \mathrm{~mm}(\mathrm{D}) \times 101 \mathrm{~mm}(H)$

Fused Main Switch Accessories

Metal Enclosure for Fused Main Switch (DB700/701)
DB790
屋
DB791 Metal Enclosure for Fused Main Switch (DB750/751)
suitable for DB701/751 100A fused main switch

Enables surface and rear e
Suitable for $35 \mathrm{~mm}^{2}$ cables
Enables surface and rear entry cable access
Suitable for $35 \mathrm{~mm}^{2}$ cables

Cable Size: 790: 25mm² \& $16 \mathrm{~mm}^{2} 791981: 35 \mathrm{~mm}^{2}$
Dimensions: 790 791: $168 \mathrm{~mm}(\mathrm{~W}) \times 94.5 \mathrm{~mm}(\mathrm{D}) \times 133 \mathrm{~mm}(H) 981: 80 \mathrm{~mm}(\mathrm{~W}) \times 90 \mathrm{~mm}(\mathrm{D}) \times 45 \mathrm{~mm}(\mathrm{H})$

Board Product Code	CUEB563RCD3	GUEB580RCD3
Ingress Protection	1 P 20	
IK Rating	Ік05	
Operational Temperature	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	
Tail Clamp Capacity	$25 \mathrm{~mm}{ }^{2}$	
Tail clamp Torque	1.2Nm Max	
CPC \& N Bars Capacity	$16 \mathrm{~mm}^{2}$	
CPC \& N Bars Torque	2.0 Nm	
Switch-Disconnector Fitted		-
RCD Fitted	$1 \times 63 \mathrm{~A} 30 \mathrm{~mA} \mathrm{RCD} \mathrm{(CU2RCD63A)}$	$1 \times 80 \mathrm{~A}$ 30mA RCD (CU2RCD80A)
SPD Fitted		
Free Ways	3	3
Nett Weight	2.9kg	2.9kg

Board Product Code	cuebiomss
Ingress Protection	IP20
IK Rating	1K05
Operational Temperature	$5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Tail Clamp Capacity	$25 \mathrm{~mm}^{2}$
Tail Clamp Torque	1.2Nm Max
CPC \& N Bars Capacity	$16 \mathrm{~mm}^{2}$
CPC \& N Bars Torque	2.0 Nm
Switch-Disconnector Fitted	$1 \times 100 \mathrm{~A}$ (CU2MS100)
RGD Fitted	
SPD Fitted	-
Free Ways	${ }^{8}$
Nett Weight	3.6kg

Board Product Code	CUEB14MS12	CUEB14MSRCD8	CUEB14MSRCDSP6	CUEHIB14MSRCD8
Ingress Protection	$1 \mathrm{P20}$			
IK Rating	1105			
Operational Temperature	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$			
Tail Clamp Capacity	$25 \mathrm{~mm}{ }^{2}$			
Tail Clamp Torque	1.2Nm Max			
CPC \& N Bars Capacity	$16 \mathrm{~mm}^{2}$			
CPC \& N Bars Torque	2.0 Nm			
Switch: Disconnector Fitted	$1 \times 100 \mathrm{~A}$ (CU2MS100)	$1 \times 100 \mathrm{~A}$ (CU2MS 100)	$1 \times 100 \mathrm{~A}$ (CU2MS100)	$1 \times 100 \mathrm{~A}$ (CU2MS100)
RCD Fitted	-	$2 \times 80 \mathrm{~A}$ 30mA RCD (CU2RCD80A)	$2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD (CU2RCD80A)	$2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD (CU2RCDBOA)
SPD Fitted	-	-	$1 \times 40 \mathrm{kA} \mathrm{SPD}$ (CU2SPD275)	-
Free Ways	12	$8(4+4)$	6 (3+3)	${ }^{8}$
Nett Weight	4.3kg	5.2kg	5.4 kg	5.2kg

Board Product Code	CUEB22MS20	CUEB22MSRCD16	CUEB22MSRCDSP14	CUEHIB22MSRCD16
Ingress Protection	1 P 20			
IK Rating	1105			
Operational Temperature	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$			
Tail Clamp Capacity	$25 \mathrm{~mm}^{2}$			
Tail Clamp Torque	1.2Nm Max			
CPC \& N Bars Capacity	$16 \mathrm{~mm}^{2}$			
CPC \& N Bars Torque	${ }^{2.0 \mathrm{Nm}}$			
Switch- Disconnector Fitted	$1 \times 100 \mathrm{~A}$ (CU2MS 100$)$	$1 \times 100 \mathrm{~A}$ (CU2MS 100$)$	$1 \times 100 \mathrm{~A}$ (CU2MS100)	$1 \times 100 \mathrm{~A}$ (CU2MS100)
RCD Fitted	-	$2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD (CU2RCD80A)	$2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD (CU2RCD80A)	$2 \times 80 \mathrm{~A} 30 \mathrm{~mA}$ RCD (CU2RCD80A)
SPD Fitted	-	-	$1 \times 40 \mathrm{kA}$ SPD (CU2SPD275)	=
Free Ways	20	16 (8+8)	$14(7+7)$	16
Nett Weight	5.4kg	6.2kg	6.4kg	6.2kg

	B Curve \& C Curve
Rated Operational Voltage (Ue)	$240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
Maximum Rated Gurrent (In)	6A to 40A
Number of Poles	$1 \mathrm{P}+\mathrm{N}$
Neutral Tail Length	450 mm
Circuit Protection	Earth fault, overcurrent \& short-circuit
Device Terminal Type	Screwed Lug \& Pin
Input Terminal Capacity	$25 \mathrm{~mm}^{2}$ Flexible $/ 32 \mathrm{~mm}^{2}$ R Rigid
Output Terminal Capacity	$16 \mathrm{~mm}^{2}$ Flexible / $25 \mathrm{~mm}^{2}$ R Rigid
Maximum Torque	Input: 2.0 Nm Ouput: 1.2 Nm
RCD Type	A
Residual Current Making \& Breaking Capacity (Im)	500 A
Tripping Current	30 mA
Residual Non-operating Current (IAn)	0.5
Impulse Withstand Voltage (Uimp)	4000V
Trip Type	Ground Fault: Electronic/Electromagnetic Over Current: Thermal/Magnetic
Endurance Operations	Mechnical: 20000 Electrical: 5000
Operational Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

	63A 30mA	80A 30mA
Rated Operational Voltage (Ue)	$230 \mathrm{~V} \sim$	$230 \mathrm{~V} \sim$
Maximum Rated Current (In)	63A	80A
RCD Type	A	A
Number of Poles	$2(1+N)$	$2(1+N)$
Residual Current Making \& Breaking Capacity (Im)	630 A	800 A
Tripping Gurrent	30 mA	30 mA
Residual Non-operating Gurrent (IAn)	0.5	0.5
Impulse withstand Voltage (Uimp)	4000V	4000V
Endurance Operations	2000 'ON' \& 1000 'OFF' Cycles	2000 'ON' \& 1000 'OFF' Cycles
Trip Type	Electro-Magnetic Release	Electro-Magnetic Release
Device Terminal Type	Screwed Lug \& Pin	Screwed Lug \& Pin
Terminal Capacity	$16 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$
Maximum Torque	2.5 Nm	2.5 Nm
Operational Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Maximum Continuous Operating Voltage (Uc)	275V~
SPD Type	Type 2
Number Of Poles	2
Visual Status (Green)	Normal Function
Visual Status (Red)	Cartridge Replaceable For L\&N (Product Ret.SP2SPDC275)
Device Terminal Type	Screwed Lug \& Pin
Terminal Capacity	L\&N: $2.5 \mathrm{~mm}^{2} 355 \mathrm{~mm}^{2}$, PE: $4 \mathrm{~mm}^{2}-35 \mathrm{~mm}^{2}$
Maximum Torque	2.0 Nm
Circuit Current	25A to 32A
Internal Overcurrent Protection	300 A
Maximum Voltage Protection Level (Up)	<1.6Kv
Nominal Discharge Current (In)	$20 \mathrm{KA}(\mathrm{L}-\mathrm{N}$ \& N-PE)
Maximum Discharge Current (Imax)	40KA (L-N \& N-PE)
Response Time (ta)	<25ns
Compatible Earthing Systems	TT/ TN
Operational Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Reserve Indicator Light

Neutral cartridges cannot be put into spares reserved for phase cartridges and visa versa.

SPD is at End of Life.

Surge Protection

The Type 2, 2 Pole 40kA Surge Protection Device 275Uc V \sim) protect all aspects of the installation from an electrica surge, anything from lighting and motors to lightning

As well as preventing premature aging, destruction of equipment and unnecessary downtime SPDs are ecommended to protect sensitive electronic equipment televisions, washing machines \& LED Lighting.

Technical Data

- Complies with BS EN 61643-1-11
- D Versions: end of life indicator, auxiliary contac
for remote indication.
- R Versions: reserve status indicator, signalling,
- Connection Capacity (terminal blocks L, N \& E): - Connection Capacity (terminar blocks L, N \& E): - 230 V a.c. 1 A .12 V .10 mA

Installation and Connection

- The main protection SPDs are installed directly after the main incoming switch or RCCB
- Connected in parallel to the equipment to be protected

Protection is assured in both common and
differential modes.
Cartridge Replaceable For Both L\&N (Product Ref SP2SPDC275)
sales@scolmore.com | Call: 0182763454

Installation Information

All the installation information you need, from fixing centre's, knockout sizes and torque settings

Dimensions (mm)					
Unit Ways	Width	Height	Depth (Body)	Depth (Overall)	XY Fixing Centres
5	168	260	92	116	118×199
8	222	260	92	116	172×199
10	258	260	92	116	208×199
12	294	260	92	116	244×199
14	330	260	92	116	280×199
16	366	260	92	116	316×199
18	402	260	92	116	352×199
22	474	260	92	116	424×199
Knockouts (mm)					
Unit Ways	Sides (ø)		Top \& Bottom (ø)	Rear	
5	1×25, 1×32		2×20, 1×40	60x60	
8	1×25, 1×40		3x20, 1x32, 1×40	100x60	
10	$1 \times 25,1 \times 40$		$3 \times 20,1 \times 32,1 \times 40$	100x60	
12	2x40		3x20, 2×25 2x32	2x100x60	
14	1×32, 1×40		$3 \times 20,2 \times 25,2 \times 40$	2x100x60	
16	2x40		4×20, 2x25, 2x40	2x100x60	
18	1×32, 1x40		$5 \times 20,2 \times 25,2 \times 40$	2x100x60	
22	1×32, 1x40		$7 \times 20,2 \times 25,2 \times 40$	3x100x60	

Device Type	Number Of Ways	Maximum Conductor Size	Maximum Torque	
			Input	Output
Main Switch	2	$35 \mathrm{~mm}^{2}$	2.5 Nm	2.5 Nm
RCD	2	$16 \mathrm{~mm}^{2}(63 \mathrm{~A}), 25 \mathrm{~mm}^{2}$ (80A), $35 \mathrm{~mm}^{2}$ (100A)	2.5 Nm	2.5 Nm
SPD	2	L $2 \mathrm{~N}: 2.5 \mathrm{~mm}^{2} 355 \mathrm{~mm}^{2}$, PE: $4 \mathrm{~mm}^{2} 35 \mathrm{~mm}^{2}$	2.0 Nm	2.0 Nm
мсв	1	$16 \mathrm{~mm}^{2}$ Flexible or $25 \mathrm{~mm}^{2}$ Rigid (Up to 25A)	2.0Nm	2.0Nm
		$25 \mathrm{~mm}^{2}$ Flexible or $35 \mathrm{~mm}^{2}$ Rigid (32A - 63A)		
всво	1	$25 \mathrm{~mm}^{2}$ Flexible $/ 32 \mathrm{~mm}^{2}$ Rigid (Input)	2.0Nm	1.2Nm
		$16 \mathrm{~mm}^{2}$ Flexible $/ 25 \mathrm{~mm}^{2}$ Rigid (Output)		
Earth \& Neutral Bars		$16 \mathrm{~mm}^{2}$	2.0 Nm	
Mains Tail Clamp		$25 \mathrm{~mm}^{2}$	1.2Nm	

Fused Main Switch

Fuse Manutacturer				
Rating	Bussmann	Lawson	mem	cE
40A	40к¢85	ME40	4048	RHF40
45A	45KR85	ME45	4548	
50A	50кв85	MEs0	504R	RHF50
60A	60к¢85	ME60	6048	RHF60
70A	70KR85	ME70	-	-
80A	8оквв5	м ${ }^{\text {Eso }}$	8048	RHF80
100A	100kR85	ME100	-	.

United Kingdom

CLICK っ... Skolmorearoup

Scolmore House, Mariner,
Lichfield Road Industrial Estate,
Tamworth, Staffordshire, B79 7UL
+44 (0) 182763454
sales@scolmore.com
wuw.scolmore.com
(f) y in (0)

Southern Ireland

cLick Litehouse

18 Corrig Road,
Sandyford Industria Estate,
Dublin, D18 WV79, Ireland

T: +353 (1) 2811122
F: +353 (1) 2811224
E: sales@clicklitehouse.ie
unw.clicklitehouse.ie
† © © ©

Dubai, UAE

Scolmare

Lake Central Tower,
Office 1803, Business Bay.
Dubai, UAE

UAE Office: +971 45896552
F: +971524511164
E: sales@scolmoredubai.com
www.scolmoredubai.com
f) in (0) iㅛ

[^0]: Warranty: 3 Years
 Standards: BS EN 61009 -
 Neutral Flylead: 450 mm
 Dimensions: $17.8 \mathrm{~mm}(\mathrm{~W}) \times 91.8 \mathrm{~mm}(H) \times 76.6 \mathrm{~mm}$ (D)

